Laboratory astrophysics and complementary theoretical calculations are the
foundations of astronomy and astrophysics and will remain so into the
foreseeable future. The impact of laboratory astrophysics ranges from the
scientific conception stage for ground-based, airborne, and space-based
observatories, all the way through to the scientific return of these projects
and missions. It is our understanding of the under-lying physical processes and
the measurements of critical physical parameters that allows us to address
fundamental questions in astronomy and astrophysics. In this regard, laboratory
astrophysics is much like detector and instrument development at NASA, NSF, and
DOE. These efforts are necessary for the success of astronomical research being
funded by the agencies. Without concomitant efforts in all three directions
(observational facilities, detector/instrument development, and laboratory
astrophysics) the future progress of astronomy and astrophysics is imperiled.
In addition, new developments in experimental technologies have allowed
laboratory studies to take on a new role as some questions which previously
could only be studied theoretically can now be addressed directly in the lab.
With this in mind we, the members of the AAS Working Group on Laboratory
Astrophysics, have prepared this State of the Profession Position Paper on the
laboratory astrophysics infrastructure needed to ensure the advancement of
astronomy and astrophysics in the next decade.Comment: Position paper submitted by the AAS Working Group on Laboratory
Astrophysics (WGLA) to the State of the Profession (Facilities, Funding and
Programs Study Group) of the Astronomy and Astrophysics Decadal Survey
(Astro2010