In this thesis, we study several well-motivated variants of the Traveling Salesman Problem (TSP). First, we consider makespan minimization for vehicle scheduling problems on trees with release and handling times. 2-approximation algorithms were known for several variants of the single vehicle problem on a path. A 3/2-approximation algorithm was known for the single vehicle problem on a path where there is a fixed starting point and the vehicle must return to the starting point upon completion. Karuno, Nagamochi and Ibaraki give a 2-approximation algorithm for the single vehicle problem on trees. We develop a Polynomial Time Approximation Scheme (PTAS) for the single vehicle scheduling problem on trees which have a constant number of leaves. This PTAS can be easily adapted to accommodate various starting/ending constraints. We then extended this to a PTAS for the multiple vehicle problem where vehicles operate in disjoint subtrees. We also present competitive online algorithms for some single vehicle scheduling problems. Secondly, we study a class of problems called the Online Packet TSP Class (OP-TSP-CLASS). It is based on the online TSP with a packet of requests known and available for scheduling at any given time. We provide a 5/3 lower bound on any online algorithm for problems in OP-TSP-CLASS. We extend this result to the related k-reordering problem for which a 3/2 lower bound was known. We develop a κ+1-competitive algorithm for problems in OP-TSP-CLASS, where a κ-approximation algorithm is known for the offline version of that problem. We use this result to develop an offline m(κ+1)-approximation algorithm for the Precedence-Constrained TSP (PCTSP) by segmenting the n requests into m packets. Its running time is mf(n/m) given a κ-approximation algorithm for the offline version whose running time is f(n)