Langlands duality for finite-dimensional representations of quantum affine algebras


We describe a correspondence (or duality) between the q-characters of finite-dimensional representations of a quantum affine algebra and its Langlands dual in the spirit of q-alg/9708006 and 0809.4453. We prove this duality for the Kirillov-Reshetikhin modules and their irreducible tensor products. In the course of the proof we introduce and construct "interpolating (q,t)-characters" depending on two parameters which interpolate between the q-characters of a quantum affine algebra and its Langlands dual.Comment: 40 pages; several results and comments added. Accepted for publication in Letters in Mathematical Physic

    Similar works

    Full text


    Available Versions

    Last time updated on 05/06/2019