School of Engineering, The University of Queensland
Abstract
Upwelling of deep seawater to the region, where sunlight reaches, can produce the ocean farm since deep seawater contains high concentration of nutrient. The numerical simulation for upwelling of deep seawater with the perpetual salt fountain proposed by Stommel et al. was conducted in this study. The temperature and salinity distributions measured in Mariana area where the upwelling experiment was conducted by Maruyama et al. was used. As a result, the velocity profile of the upwelling experiment was predicted as M-shape flow and the flow rate was estimated as 43t/day in the pipe. Additionally the possibility of reverse flow in the pipe was indicated. Furthermore the possibility of upwelling in other ocean areas using the results was discussed. As a result, it became clear that the unified representation of ocean conditions was achieved by the new dimensionless number RaR, which was modified Rayleigh number, and flow rate in the pipe could be evaluated by RaR