By acoustically detecting the optical absorption contrast, photoacoustic (PA) tomography (PAT) has broken the penetration limits of traditional high-resolution optical imaging. Through spectroscopic analysis of the target's optical absorption, PAT can identify a wealth of endogenous and exogenous molecules and thus is inherently capable of molecular imaging with high sensitivity. PAT's molecular sensitivity is uniquely accompanied by non-ionizing radiation, high spatial resolution, and deep penetration in biological tissues, which other optical imaging modalities cannot achieve yet. In this concise review, we summarize the most recent technological advancements in PA molecular imaging and highlight the novel molecular probes specifically made for PAT in deep tissues. We conclude with a brief discussion of the opportunities for future advancements