Large-scale simulations have been performed on the current-driven
two-dimensional XY gauge glass model with resistively-shunted-junction
dynamics. It is observed that the linear resistivity at low temperatures tends
to zero, providing strong evidence of glass transition at finite temperature.
Dynamic scaling analysis demonstrates that perfect collapses of current-voltage
data can be achieved with the glass transition temperature Tg​=0.22, the
correlation length critical exponent ν=1.8, and the dynamic critical
exponent z=2.0. A genuine continuous depinning transition is found at zero
temperature. For creeping at low temperatures, critical exponents are evaluated
and a non-Arrhenius creep motion is observed in the glass phase.Comment: 10 pages, 6 figure