We numerically investigate quantum rings in graphene and find that their
electronic properties may be strongly influenced by the geometry, the edge
symmetries and the structure of the corners. Energy spectra are calculated for
different geometries (triangular, hexagonal and rhombus-shaped graphene rings)
and edge terminations (zigzag, armchair, as well as the disordered edge of a
round geometry). The states localized at the inner edges of the graphene rings
describe different evolution as a function of magnetic field when compared to
those localized at the outer edges. We show that these different evolutions are
the reason for the formation of sub-bands of edge states energy levels,
separated by gaps (anticrossings). It is evident from mapping the charge
densities that the anticrossings occur due to the coupling between inner and
outer edge states.Comment: 8 pages, 7 figures. Figures in low resolution due to size
requirements - higher quality figures on reques