research

Mechanisms Of Fracturing In Structures Built From Topologically Interlocked Blocks

Abstract

Failure of materials is in many cases associated with initiation and subsequent propagation of macroscopic fractures. Consequently, in order to increase the strength, one needs to inhibit either crack initiation or propagation. The principle of topological interlocking provides a unique opportunity to construct materials and structures in which both routes of the strength increase can be realised. Materials and structures built on the basis of this principle consist of many elements which are hold together by the special geometry of their shape, together with an external constrain. The absence of the binder phase between the elements allows the interfaces to arrest macroscopic crack propagation. In addition, with sufficiently small size of the elements an increase in local strength and, possibly, in the stress for crack initiation can be achieved by capitalising on the size effect. Furthermore, the ability of some interlocking structures to tolerate missing elements can serve to prevent the avalanche-type failure initiated by failure of one of the elements. In this paper, experimental results and a theoretical analysis with regard to this possibility are presented

    Similar works