research

Pressure-Driven Metal-Insulator Transition in Hematite from Dynamical Mean-Field Theory

Abstract

The Local Density Approximation combined with Dynamical Mean-Field Theory (LDA+DMFT method) is applied to the study of the paramagnetic and magnetically ordered phases of hematite Fe2_2O3_3 as a function of volume. As the volume is decreased, a simultaneous 1st order insulator-metal and high-spin to low-spin transition occurs close to the experimental value of the critical volume. The high-spin insulating phase is destroyed by a progressive reduction of the charge gap with increasing pressure, upon closing of which the high spin phase becomes unstable. We conclude that the transition in Fe2_2O3_3 at ≈\approx50 GPa can be described as an electronically driven volume collapse.Comment: 5 pages, 4 figure

    Similar works