research

Nonautonomous Hamiltonian Systems and Morales-Ramis Theory I. The Case x¨=f(x,t)\ddot{x}=f(x,t)

Abstract

In this paper we present an approach towards the comprehensive analysis of the non-integrability of differential equations in the form x¨=f(x,t)\ddot x=f(x,t) which is analogous to Hamiltonian systems with 1+1/2 degree of freedom. In particular, we analyze the non-integrability of some important families of differential equations such as Painlev\'e II, Sitnikov and Hill-Schr\"odinger equation. We emphasize in Painlev\'e II, showing its non-integrability through three different Hamiltonian systems, and also in Sitnikov in which two different version including numerical results are shown. The main tool to study the non-integrability of these kind of Hamiltonian systems is Morales-Ramis theory. This paper is a very slight improvement of the talk with the almost-same title delivered by the author in SIAM Conference on Applications of Dynamical Systems 2007.Comment: 15 pages without figures (19 pages and 6 figures in the published version

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019