research

Hadronization revisited : the dynamics behind hadro-chemical equilibrium

Abstract

The multiplicity of hadronic species created in elementary, and in nucleus-nucleus collisions, are known to be well reproduced by the statistical hadronization model, in its canonical and grand-canonical versions.To understand the origin of the implied equilibrium we revisit the hadronization models developed for e+e- annihilation to hadrons which imply spatial color pre-confinement clusters forming at the end of the pQCD evolution, which decays into on-shell hadrons/resonances. The classical ensemble description arises as a consequence of decoherence and phase space dominance during cluster formation, and decay.For A+A collisions we assume that hadronization occurs from similar singlet clusters which will overlap spatially owing to the extreme density. This is imaged in the transition to the grand-canonical ensemble.This transition sets in with increasing A and collision centrality. It can be described by a percolation model

    Similar works