In an empirical Bayesian setting, we provide a new multiple testing method,
useful when an additional covariate is available, that influences the
probability of each null hypothesis being true. We measure the posterior
significance of each test conditionally on the covariate and the data, leading
to greater power. Using covariate-based prior information in an unsupervised
fashion, we produce a list of significant hypotheses which differs in length
and order from the list obtained by methods not taking covariate-information
into account. Covariate-modulated posterior probabilities of each null
hypothesis are estimated using a fast approximate algorithm. The new method is
applied to expression quantitative trait loci (eQTL) data.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS158 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org