We study the dynamics of the five-parameter quadratic family of
volume-preserving diffeomorphisms of R^3. This family is the unfolded normal
form for a bifurcation of a fixed point with a triple-one multiplier and also
is the general form of a quadratic three-dimensional map with a quadratic
inverse. Much of the nontrivial dynamics of this map occurs when its two fixed
points are saddle-foci with intersecting two-dimensional stable and unstable
manifolds that bound a spherical ``vortex-bubble''. We show that this occurs
near a saddle-center-Neimark-Sacker (SCNS) bifurcation that also creates, at
least in its normal form, an elliptic invariant circle. We develop a simple
algorithm to accurately compute these elliptic invariant circles and their
longitudinal and transverse rotation numbers and use it to study their
bifurcations, classifying them by the resonances between the rotation numbers.
In particular, rational values of the longitudinal rotation number are shown to
give rise to a string of pearls that creates multiple copies of the original
spherical structure for an iterate of the map.Comment: 53 pages, 29 figure