research

Lepton Masses in a Minimal Model with Triplet Higgs Bosons and S3S_3 Flavor Symmetry

Abstract

Viable neutrino and charged lepton masses and mixings are obtained by imposing a S3×Z4×Z3S_3 \times Z_4 \times Z_3 flavor symmetry in a model with a few additional Higgs. We use two SU(2)LSU(2)_L triplet Higgs which are arranged as a doublet of S3S_3, and standard model singlet Higgs which are also put as doublets of S3S_3. We break the S3S_3 symmetry in this minimal model by giving vacuum expectation values (VEV) to the additional Higgs fields. Dictated by the minimum condition for the scalar potential, we obtain certain VEV alignments which allow us to maintain μτ\mu-\tau symmetry in the neutrino sector, while breaking it maximally for the charged leptons. This helps us to simultaneously explain the hierarchical charged lepton masses, and the neutrino masses and mixings. In particular, we obtain maximal θ23\theta_{23} and zero θ13\theta_{13}. We allow for a mild breaking of the μτ\mu-\tau symmetry for the neutrinos and study the phenomenology. We give predictions for θ13\theta_{13} and the CP violating Jarlskog invariant JCPJ_{CP}, as a function of the μτ\mu-\tau symmetry breaking parameter. We also discuss possible collider signatures and phenomenology associated with lepton flavor violating processes.Comment: 29 pages, 5 figures. Version to be appeared in PRD. Phenomenology of Lepton flavor violation and possible collider signatures of this model have been include

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 25/03/2019