Set-Based Multi-Task Priority is a recent framework to handle inverse
kinematics for redundant structures. Both equality tasks, i.e., control
objectives to be driven to a desired value, and set-bases tasks, i.e., control
objectives to be satisfied with a set/range of values can be addressed in a
rigorous manner within a priority framework. In addition, optimization tasks,
driven by the gradient of a proper function, may be considered as well, usually
as lower priority tasks. In this paper the proper design of the tasks, their
priority and the use of a Set-Based Multi-Task Priority framework is proposed
in order to handle several constraints simultaneously in real-time. It is shown
that safety related tasks such as, e.g., joint limits or kinematic singularity,
may be properly handled by consider them both at an higher priority as
set-based task and at a lower within a proper optimization functional.
Experimental results on a 7DOF Jaco$^2