Much attention has been given to automatic sleep staging algorithms in past
years, but the detection of discrete events in sleep studies is also crucial
for precise characterization of sleep patterns and possible diagnosis of sleep
disorders. We propose here a deep learning model for automatic detection and
annotation of arousals and leg movements. Both of these are commonly seen
during normal sleep, while an excessive amount of either is linked to disrupted
sleep patterns, excessive daytime sleepiness impacting quality of life, and
various sleep disorders. Our model was trained on 1,485 subjects and tested on
1,000 separate recordings of sleep. We tested two different experimental setups
and found optimal arousal detection was attained by including a recurrent
neural network module in our default model with a dynamic default event window
(F1 = 0.75), while optimal leg movement detection was attained using a static
event window (F1 = 0.65). Our work show promise while still allowing for
improvements. Specifically, future research will explore the proposed model as
a general-purpose sleep analysis model.Comment: Accepted for publication in 41st International Engineering in
Medicine and Biology Conference (EMBC), July 23-27, 201