The brain is an assembly of neuronal populations interconnected by structural
pathways. Brain activity is expressed on and constrained by this substrate.
Therefore, statistical dependencies between functional signals in directly
connected areas can be expected higher. However, the degree to which brain
function is bound by the underlying wiring diagram remains a complex question
that has been only partially answered. Here, we introduce the
structural-decoupling index to quantify the coupling strength between structure
and function, and we reveal a macroscale gradient from brain regions more
strongly coupled, to regions more strongly decoupled, than expected by
realistic surrogate data. This gradient spans behavioral domains from
lower-level sensory function to high-level cognitive ones and shows for the
first time that the strength of structure-function coupling is spatially
varying in line with evidence derived from other modalities, such as functional
connectivity, gene expression, microstructural properties and temporal
hierarchy