Graph signal processing (GSP) has become an important tool in many areas such
as image processing, networking learning and analysis of social network data.
In this paper, we propose a broader framework that not only encompasses
traditional GSP as a special case, but also includes a hybrid framework of
graph and classical signal processing over a continuous domain. Our framework
relies extensively on concepts and tools from functional analysis to generalize
traditional GSP to graph signals in a separable Hilbert space with infinite
dimensions. We develop a concept analogous to Fourier transform for generalized
GSP and the theory of filtering and sampling such signals