research

Adaptive Reconstruction for Electrical Impedance Tomography with a Piecewise Constant Conductivity

Abstract

In this work we propose and analyze a numerical method for electrical impedance tomography of recovering a piecewise constant conductivity from boundary voltage measurements. It is based on standard Tikhonov regularization with a Modica-Mortola penalty functional and adaptive mesh refinement using suitable a posteriori error estimators of residual type that involve the state, adjoint and variational inequality in the necessary optimality condition and a separate marking strategy. We prove the convergence of the adaptive algorithm in the following sense: the sequence of discrete solutions contains a subsequence convergent to a solution of the continuous necessary optimality system. Several numerical examples are presented to illustrate the convergence behavior of the algorithm.Comment: 26 pages, 12 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions