research

Superactivation of monogamy relations for nonadditive quantum correlation measures

Abstract

We investigate the general monogamy and polygamy relations satisfied by quantum correlation measures. We show that there exist two real numbers α\alpha and β\beta such that for any quantum correlation measure QQ, QxQ^x is monogamous if xαx\geq \alpha and polygamous if 0xβ0\leq x\leq \beta for a given multipartite state ρ\rho. For β<x<α\beta <x<\alpha, we show that the monogamy relation can be superactivated by finite mm copies ρm\rho^{\otimes m} of ρ\rho for nonadditive correlation measures. As a detailed example, we use the negativity as the quantum correlation measure to illustrate such superactivation of monogamy properties. A tighter monogamy relation is presented at last

    Similar works

    Full text

    thumbnail-image

    Available Versions