research

Differential Privacy of Aggregated DC Optimal Power Flow Data

Abstract

We consider the problem of privately releasing aggregated network statistics obtained from solving a DC optimal power flow (OPF) problem. It is shown that the mechanism that determines the noise distribution parameters are linked to the topology of the power system and the monotonicity of the network. We derive a measure of "almost" monotonicity and show how it can be used in conjunction with a linear program in order to release aggregated OPF data using the differential privacy framework.Comment: Accepted by 2019 American Control Conference (ACC

    Similar works

    Available Versions

    Last time updated on 10/08/2021