In this paper, we propose an approach to obtain reduced-order models of
Markov chains. Our approach is composed of two information-theoretic processes.
The first is a means of comparing pairs of stationary chains on different state
spaces, which is done via the negative Kullback-Leibler divergence defined on a
model joint space. Model reduction is achieved by solving a
value-of-information criterion with respect to this divergence. Optimizing the
criterion leads to a probabilistic partitioning of the states in the high-order
Markov chain. A single free parameter that emerges through the optimization
process dictates both the partition uncertainty and the number of state groups.
We provide a data-driven means of choosing the `optimal' value of this free
parameter, which sidesteps needing to a priori know the number of state groups
in an arbitrary chain.Comment: Submitted to Entrop