Stein's method via induction


Applying an inductive technique for Stein and zero bias couplings yields Berry-Esseen theorems for normal approximation for two new examples. The conditions of the main results do not require that the couplings be bounded. Our two applications, one to the Erd\H{o}s-R\'enyi, random graph with a fixed number of edges, and one to Jack measure on tableaux, demonstrate that the method can handle non-bounded variables with non-trivial global dependence, and can produce bounds in the Kolmogorov metric with the optimal rate.Comment: 59 page

    Similar works

    Full text


    Available Versions