This paper addresses forward motion control for trajectory tracking and
mobile formation coordination for a group of non-holonomic vehicles on SE(2).
Firstly, by constructing an intermediate attitude variable which involves
vehicles' position information and desired attitude, the translational and
rotational control inputs are designed in two stages to solve the trajectory
tracking problem. Secondly, the coordination relationships of relative
positions and headings are explored thoroughly for a group of non-holonomic
vehicles to maintain a mobile formation with rigid body motion constraints. We
prove that, except for the cases of parallel formation and translational
straight line formation, a mobile formation with strict rigid-body motion can
be achieved if and only if the ratios of linear speed to angular speed for each
individual vehicle are constants. Motion properties for mobile formation with
weak rigid-body motion are also demonstrated. Thereafter, based on the proposed
trajectory tracking approach, a distributed mobile formation control law is
designed under a directed tree graph. The performance of the proposed
controllers is validated by both numerical simulations and experiments