IEEE(Institute of Electrical and Electronics Engineers)
Abstract
金沢大学理工研究域電子情報学系A model of dynamic associative memories is proposed in this paper. The aim is to find all stored patterns, and to distinguish the stored and the spurious patterns. Aihara used chaotic neurons and showed that his model has a nonperiodic associative dynamics. In his model, however, it is difficult to distinguish the stored patterns from the others, because the state of the network changes continually. We propose such a new model of neurons that each neuron changes its output to the other when the accumulation of its internal state exceeds a certain threshold. By computer experiments, we show that the state of the network stays at the stored pattern for a while and then travels around to another pattern, and so on. Furthermore, when the number of the stored patterns is small, the stored and the spurious patterns can be distinguished using interval of the network staying these patterns