research

On the maximal number of three-term arithmetic progressions in subsets of Z/pZ

Abstract

Let a be a real number between 0 and 1. Ernie Croot showed that the quantity \max_A #(3-term arithmetic progressions in A)/p^2, where A ranges over all subsets of Z/pZ of size at most a*p, tends to a limit as p tends to infinity through primes. Writing c(a) for this limit, we show that c(a) = a^2/2 provided that a is smaller than some absolute constant. In fact we prove rather more, establishing a structure theorem for sets having the maximal number of 3-term progressions amongst all subsets of Z/pZ of cardinality m, provided that m < c*p.Comment: 12 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019