research

Hydrodynamic crystals: collective dynamics of regular arrays of spherical particles in a parallel-wall channel

Abstract

Simulations of over 10310^3 hydrodynamically coupled solid spheres are performed to investigate collective motion of linear trains and regular square arrays of particles suspended in a fluid bounded by two parallel walls. Our novel accelerated Stokesian-dynamics algorithm relies on simplifications associated with the Hele--Shaw asymptotic far-field form of the flow scattered by the particles. The simulations reveal propagation of particle-displacement waves, deformation and rearrangements of a particle lattice, propagation of dislocation defects in ordered arrays, and long-lasting coexistence of ordered and disordered regions.Comment: 4 pages 6 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020