We propose generalization of escape rate from a metastable state for
externally driven correlated noise processes in one dimension. In addition to
the internal non-Markovian thermal fluctuations, the external correlated noise
processes we consider are Gaussian, stationary in nature and are of
Ornstein-Uhlenbeck type. Based on a Fokker-Planck description of the effective
noise processes with finite memory we derive the generalized escape rate from a
metastable state in the moderate to large damping limit and investigate the
effect of degree of correlation on the resulting rate. Comparison of the
theoretical expression with numerical simulation gives a satisfactory agreement
and shows that by increasing the degree of external noise correlation one can
enhance the escape rate through the dressed effective noise strength.Comment: 9 pages, 1 figur