research

Group Testing with Random Pools: optimal two-stage algorithms

Abstract

We study Probabilistic Group Testing of a set of N items each of which is defective with probability p. We focus on the double limit of small defect probability, p>1, taking either p->0 after NN\to\infty or p=1/Nβp=1/N^{\beta} with β(0,1/2)\beta\in(0,1/2). In both settings the optimal number of tests which are required to identify with certainty the defectives via a two-stage procedure, Tˉ(N,p)\bar T(N,p), is known to scale as NplogpNp|\log p|. Here we determine the sharp asymptotic value of Tˉ(N,p)/(Nplogp)\bar T(N,p)/(Np|\log p|) and construct a class of two-stage algorithms over which this optimal value is attained. This is done by choosing a proper bipartite regular graph (of tests and variable nodes) for the first stage of the detection. Furthermore we prove that this optimal value is also attained on average over a random bipartite graph where all variables have the same degree, while the tests have Poisson-distributed degrees. Finally, we improve the existing upper and lower bound for the optimal number of tests in the case p=1/Nβp=1/N^{\beta} with β[1/2,1)\beta\in[1/2,1).Comment: 12 page

    Similar works

    Full text

    thumbnail-image

    Available Versions