research

Maximum stabilizer dimension for nonproduct states

Abstract

Composite quantum states can be classified by how they behave under local unitary transformations. Each quantum state has a stabilizer subgroup and a corresponding Lie algebra, the structure of which is a local unitary invariant. In this paper, we study the structure of the stabilizer subalgebra for n-qubit pure states, and find its maximum dimension to be n-1 for nonproduct states of three qubits and higher. The n-qubit Greenberger-Horne-Zeilinger state has a stabilizer subalgebra that achieves the maximum possible dimension for pure nonproduct states. The converse, however, is not true: we show examples of pure 4-qubit states that achieve the maximum nonproduct stabilizer dimension, but have stabilizer subalgebra structures different from that of the n-qubit GHZ state.Comment: 6 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019