research

Les espaces de Berkovich sont excellents

Abstract

In this paper, we first study the local rings of a Berkovich analytic space from the point of view of commutative algebra. We show that those rings are excellent ; we introduce the notion of a an analytically separable extension of non-archimedean complete fields (it includes the case of the finite separable extensions, and also the case of any complete extension of a perfect complete non-archimedean field) and show that the usual commutative algebra properties (Rm, Sm, Gorenstein, Cohen-Macaulay, Complete Intersection) are stable under analytically separable ground field extensions; we also establish a GAGA principle with respect to those properties for any finitely generated scheme over an affinoid algebra. A second part of the paper deals with more global geometric notions : we define, show the existence and establish basic properties of the irreducible components of analytic space ; we define, show the existence and establish basic properties of its normalization ; and we study the behaviour of connectedness and irreducibility with respect to base change.Comment: This is the (almost) definitive version of the paper, which is going to appear in "Annales de l'institut Fourier

    Similar works