Published mid infrared spectra of transiting planets HD 209458b and HD
189733b, obtained during secondary eclipse by the InfraRed Spectrograph (IRS)
aboard the Spitzer Space Telescope, are predominantly featureless. In
particular these flux ratio spectra do not exhibit an expected feature arising
from water vapor absorption short-ward of 10 um. Here we suggest that, in the
absence of flux variability, the spectral data for HD 189733b are inconsistent
with 8 um-photometry obtained with Spitzer's InfraRed Array Camera (IRAC),
perhaps an indication of problems with the challenging reduction of the IRS
spectra. The IRAC point, along with previously published secondary eclipse
photometry for HD 189733b, are in good agreement with a one-dimensional model
of HD 189733b that clearly shows absorption due to water vapor in the emergent
spectrum. We are not able to draw firm conclusions regarding the IRS data for
HD 209458b, but spectra predicted by 1D and 3D atmosphere models fit the data
adequately, without adjustment of the water abundance or reliance on cloud
opacity. We argue that the generally good agreement between model spectra and
IRS spectra of brown dwarfs with atmospheric temperatures similar to these
highly irradiated planets lends confidence in the modeling procedure.Comment: Revised, Accepted to ApJ Letter