Studying the internal structure of extragalactic jets is crucial for
understanding their physics. The Japanese-led space VLBI project VSOP has
presented an opportunity for such studies, by reaching baseline lengths of up
to 36,000 km and resolving structures down to an angular size of ≈0.3
mas at 5 GHz. VSOP observations of the jet in 0836+710 at 1.6 and 5 GHz have
enabled tracing of the radial structure of the flow on scales from 2 mas to 200
mas along the jet and determination of the wavelengths of individual
oscillatory modes responsible for the formation of the structure observed. We
apply linear stability analysis to identify the oscillatory modes with modes of
Kelvin-Helmholtz instability that match the wavelengths of the structures
observed. We find that the jet structure in 0836+710 can be reproduced by the
helical surface mode and a combination of the helical and elliptic body modes
of Kelvin-Helmholtz instability. Our results indicate that the jet is
substantially stratified and different modes of the instability grow inside the
jet at different distances to the jet axis. The helical surface mode can be
driven externally, and we discuss the implications of the driving frequency on
the physics of the active nucleus in 0836+710.Comment: Accepted for publication in Astronomy & Astrophysics Letter