Recent three-dimensional radiative hydrodynamics simulations of
protoplanetary disks report disparate disk behaviors, and these differences
involve the importance of convection to disk cooling, the dependence of disk
cooling on metallicity, and the stability of disks against fragmentation and
clump formation. To guarantee trustworthy results, a radiative physics
algorithm must demonstrate the capability to handle both the high and low
optical depth regimes. We develop a test suite that can be used to demonstrate
an algorithm's ability to relax to known analytic flux and temperature
distributions, to follow a contracting slab, and to inhibit or permit
convection appropriately. We then show that the radiative algorithm employed by
Meji\'a (2004) and Boley et al. (2006) and the algorithm employed by Cai et al.
(2006) and Cai et al. (2007, in prep.) pass these tests with reasonable
accuracy. In addition, we discuss a new algorithm that couples flux-limited
diffusion with vertical rays, we apply the test suite, and we discuss the
results of evolving the Boley et al. (2006) disk with this new routine.
Although the outcome is significantly different in detail with the new
algorithm, we obtain the same qualitative answers. Our disk does not cool fast
due to convection, and it is stable to fragmentation. We find an effective
α≈10−2. In addition, transport is dominated by low-order
modes.Comment: Submitted to Ap