We study the population of satellite galaxies formed in a suite of
N-body/gasdynamical simulations of galaxy formation in a LCDM universe. We find
little spatial or kinematic bias between the dark matter and the satellite
population. The velocity dispersion of the satellites is a good indicator of
the virial velocity of the halo: \sigma_{sat}/V_{vir}=0.9 +/- 0.2. Applied to
the Milky Way and M31 this gives V_{vir}^{MW}=109 +/- 22$ km/s and
V_{vir}^{M31} = 138 +/- 35 km/s, respectively, substantially lower than the
rotation speed of their disk components. The detailed kinematics of simulated
satellites and dark matter are also in good agreement. By contrast, the stellar
halo of the simulated galaxies is kinematically and spatially distinct from the
population of surviving satellites. This is because the survival of a satellite
depends on mass and on time of accretion; surviving satellites are biased
toward low-mass systems that have been recently accreted by the galaxy. Our
results support recent proposals for the origin of the systematic differences
between stars in the Galactic halo and in Galactic satellites: the elusive
``building blocks'' of the Milky Way stellar halo were on average more massive,
and were accreted (and disrupted) earlier than the population of dwarfs that
has survived self-bound until the present.Comment: 13 pages, 11 figures, MNRAS in press. Accepted version with minor
changes. Version with high resolution figures available at:
http://www.astro.uvic.ca/~lsales/SatPapers/SatPapers.htm