Diffuse emission is produced in energetic cosmic ray (CR) interactions,
mainly protons and electrons, with the interstellar gas and radiation field and
contains the information about particle spectra in distant regions of the
Galaxy. It may also contain information about exotic processes such as dark
matter annihilation, black hole evaporation etc. A model of the diffuse
emission is important for determination of the source positions and spectra.
Calculation of the Galactic diffuse continuum gamma-ray emission requires a
model for CR propagation as the first step. Such a model is based on theory of
particle transport in the interstellar medium as well as on many kinds of data
provided by different experiments in Astrophysics and Particle and Nuclear
Physics. Such data include: secondary particle and isotopic production cross
sections, total interaction nuclear cross sections and lifetimes of radioactive
species, gas mass calibrations and gas distribution in the Galaxy (H_2, H I, H
II), interstellar radiation field, CR source distribution and particle spectra
at the sources, magnetic field, energy losses, gamma-ray and synchrotron
production mechanisms, and many other issues. We are continuously improving the
GALPROP model and the code to keep up with a flow of new data. Improvement in
any field may affect the Galactic diffuse continuum gamma-ray emission model
used as a background model by the GLAST LAT instrument. Here we report about
the latest improvements of the GALPROP and the diffuse emission model.Comment: 2 pages, 2 figures; to appear in the Proc. of the First Int. GLAST
Symp. (Stanford, Feb. 5-8, 2007), eds. S.Ritz, P.F.Michelson, and C.Meegan,
AIP Conf. Pro