This paper proposes the first model-free Reinforcement Learning (RL)
framework to synthesise policies for unknown, and continuous-state Markov
Decision Processes (MDPs), such that a given linear temporal property is
satisfied. We convert the given property into a Limit Deterministic Buchi
Automaton (LDBA), namely a finite-state machine expressing the property.
Exploiting the structure of the LDBA, we shape a synchronous reward function
on-the-fly, so that an RL algorithm can synthesise a policy resulting in traces
that probabilistically satisfy the linear temporal property. This probability
(certificate) is also calculated in parallel with policy learning when the
state space of the MDP is finite: as such, the RL algorithm produces a policy
that is certified with respect to the property. Under the assumption of finite
state space, theoretical guarantees are provided on the convergence of the RL
algorithm to an optimal policy, maximising the above probability. We also show
that our method produces ''best available'' control policies when the logical
property cannot be satisfied. In the general case of a continuous state space,
we propose a neural network architecture for RL and we empirically show that
the algorithm finds satisfying policies, if there exist such policies. The
performance of the proposed framework is evaluated via a set of numerical
examples and benchmarks, where we observe an improvement of one order of
magnitude in the number of iterations required for the policy synthesis,
compared to existing approaches whenever available.Comment: This article draws from arXiv:1801.08099, arXiv:1809.0782