NarrowBand-Internet of Things (NB-IoT) is an emerging cellular-based
technology that offers a range of flexible configurations for massive IoT radio
access from groups of devices with heterogeneous requirements. A configuration
specifies the amount of radio resource allocated to each group of devices for
random access and for data transmission. Assuming no knowledge of the traffic
statistics, there exists an important challenge in "how to determine the
configuration that maximizes the long-term average number of served IoT devices
at each Transmission Time Interval (TTI) in an online fashion". Given the
complexity of searching for optimal configuration, we first develop real-time
configuration selection based on the tabular Q-learning (tabular-Q), the Linear
Approximation based Q-learning (LA-Q), and the Deep Neural Network based
Q-learning (DQN) in the single-parameter single-group scenario. Our results
show that the proposed reinforcement learning based approaches considerably
outperform the conventional heuristic approaches based on load estimation
(LE-URC) in terms of the number of served IoT devices. This result also
indicates that LA-Q and DQN can be good alternatives for tabular-Q to achieve
almost the same performance with much less training time. We further advance
LA-Q and DQN via Actions Aggregation (AA-LA-Q and AA-DQN) and via Cooperative
Multi-Agent learning (CMA-DQN) for the multi-parameter multi-group scenario,
thereby solve the problem that Q-learning agents do not converge in
high-dimensional configurations. In this scenario, the superiority of the
proposed Q-learning approaches over the conventional LE-URC approach
significantly improves with the increase of configuration dimensions, and the
CMA-DQN approach outperforms the other approaches in both throughput and
training efficiency