slides

On the Probabilistic Degree of OR over the Reals

Abstract

We study the probabilistic degree over reals of the OR function on nn variables. For an error parameter ϵ\epsilon in (0,1/3), the ϵ\epsilon-error probabilistic degree of any Boolean function ff over reals is the smallest non-negative integer dd such that the following holds: there exists a distribution DD of polynomials entirely supported on polynomials of degree at most dd such that for all z{0,1}nz \in \{0,1\}^n, we have PrPD[P(z)=f(z)]1ϵPr_{P \sim D} [P(z) = f(z) ] \geq 1- \epsilon. It is known from the works of Tarui ({Theoret. Comput. Sci.} 1993) and Beigel, Reingold, and Spielman ({ Proc. 6th CCC} 1991), that the ϵ\epsilon-error probabilistic degree of the OR function is at most O(logn.log1/ϵ)O(\log n.\log 1/\epsilon). Our first observation is that this can be improved to Olog(nlog1/ϵ)O{\log {{n}\choose{\leq \log 1/\epsilon}}}, which is better for small values of ϵ\epsilon. In all known constructions of probabilistic polynomials for the OR function (including the above improvement), the polynomials PP in the support of the distribution DD have the following special structure:P=1(1L1).(1L2)...(1Lt)P = 1 - (1-L_1).(1-L_2)...(1-L_t), where each Li(x1,...,xn)L_i(x_1,..., x_n) is a linear form in the variables x1,...,xnx_1,...,x_n, i.e., the polynomial 1P(x1,...,xn)1-P(x_1,...,x_n) is a product of affine forms. We show that the ϵ\epsilon-error probabilistic degree of OR when restricted to polynomials of the above form is Ω(loga/log2a)\Omega ( \log a/\log^2 a ) where a=log(nlog1/ϵ)a = \log {{n}\choose{\leq \log 1/\epsilon}}. Thus matching the above upper bound (up to poly-logarithmic factors)

    Similar works

    Full text

    thumbnail-image

    Available Versions