research

Hypercubic effects in semileptonic decays of heavy mesons, toward BπνB \to \pi \ell \nu, with Nf=2+1+1N_f=2+1+1 Twisted fermions

Abstract

We present a preliminary study toward a lattice determination of the vector and scalar form factors of the BπνB \to \pi \ell \nu semileptonic decays. We compute the form factors relative to the transition between heavy-light pseudoscalar mesons, with masses above the physical D-mass, and the pion. We simulate heavy-quark masses in the range mcphys<mh<2mcphysm_c^{phys} < m_h < 2m_c^{phys}. Lorentz symmetry breaking due to hypercubic effects is clearly observed in the data, and included in the decomposition of the current matrix elements in terms of additional form factors. We discuss the size of this breaking as the parent-meson mass increases. Our analysis is based on the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2+1+1N_f = 2 + 1 + 1 flavors of dynamical quarks at three different values of the lattice spacing and with pion masses as small as 210210 MeV.Comment: 7 pages, 5 figures; contribution to the XXXVI International Symposium on Lattice Field Theory (LATTICE2018), East Lansing (Michigan State University, USA), July 22-28, 201

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021