We report the experimental realization of a space-time crystal with tunable
periodicity in time and space in the magnon Bose-Einstein Condensate (BEC),
formed in a room-temperature Yttrium Iron Garnet (YIG) film by radio-frequency
space-homogeneous magnetic field. The magnon BEC is prepared to have a well
defined frequency and non-zero wavevector. We demonstrate how the crystalline
"density" as well as the time and space textures of the resulting crystal may
be tuned by varying the experimental parameters: external static magnetic
field, temperature, thickness of the YIG film and power of the radio-frequency
field. The proposed space-time crystals provide a new dimension for exploring
dynamical phases of matter and can serve as a model nonlinear Floquet system,
that brings in touch the rich fields of classical nonlinear waves, magnonics
and periodically driven systems