Deep reinforcement learning (DRL) has gained great success by learning
directly from high-dimensional sensory inputs, yet is notorious for the lack of
interpretability. Interpretability of the subtasks is critical in hierarchical
decision-making as it increases the transparency of black-box-style DRL
approach and helps the RL practitioners to understand the high-level behavior
of the system better. In this paper, we introduce symbolic planning into DRL
and propose a framework of Symbolic Deep Reinforcement Learning (SDRL) that can
handle both high-dimensional sensory inputs and symbolic planning. The
task-level interpretability is enabled by relating symbolic actions to
options.This framework features a planner -- controller -- meta-controller
architecture, which takes charge of subtask scheduling, data-driven subtask
learning, and subtask evaluation, respectively. The three components
cross-fertilize each other and eventually converge to an optimal symbolic plan
along with the learned subtasks, bringing together the advantages of long-term
planning capability with symbolic knowledge and end-to-end reinforcement
learning directly from a high-dimensional sensory input. Experimental results
validate the interpretability of subtasks, along with improved data efficiency
compared with state-of-the-art approaches