We propose and study kernel conjugate gradient methods (KCGM) with random
projections for least-squares regression over a separable Hilbert space.
Considering two types of random projections generated by randomized sketches
and Nystr\"{o}m subsampling, we prove optimal statistical results with respect
to variants of norms for the algorithms under a suitable stopping rule.
Particularly, our results show that if the projection dimension is proportional
to the effective dimension of the problem, KCGM with randomized sketches can
generalize optimally, while achieving a computational advantage. As a
corollary, we derive optimal rates for classic KCGM in the case that the target
function may not be in the hypothesis space, filling a theoretical gap.Comment: 43 pages, 2 figure