Speech emotion recognition plays an important role in building more
intelligent and human-like agents. Due to the difficulty of collecting speech
emotional data, an increasingly popular solution is leveraging a related and
rich source corpus to help address the target corpus. However, domain shift
between the corpora poses a serious challenge, making domain shift adaptation
difficult to function even on the recognition of positive/negative emotions. In
this work, we propose class-wise adversarial domain adaptation to address this
challenge by reducing the shift for all classes between different corpora.
Experiments on the well-known corpora EMODB and Aibo demonstrate that our
method is effective even when only a very limited number of target labeled
examples are provided.Comment: 5 pages, 3 figures, accepted to ICASSP 201