Neuromorphic hardware platforms, such as Intel's Loihi chip, support the
implementation of Spiking Neural Networks (SNNs) as an energy-efficient
alternative to Artificial Neural Networks (ANNs). SNNs are networks of neurons
with internal analogue dynamics that communicate by means of binary time
series. In this work, a probabilistic model is introduced for a generalized
set-up in which the synaptic time series can take values in an arbitrary
alphabet and are characterized by both causal and instantaneous statistical
dependencies. The model, which can be considered as an extension of exponential
family harmoniums to time series, is introduced by means of a hybrid
directed-undirected graphical representation. Furthermore, distributed learning
rules are derived for Maximum Likelihood and Bayesian criteria under the
assumption of fully observed time series in the training set.Comment: Published in IEEE ICASSP 2019. Author's Accepted Manuscrip