We present a developmental framework based on a long-term memory and
reasoning mechanisms (Vision Similarity and Bayesian Optimisation). This
architecture allows a robot to optimize autonomously hyper-parameters that need
to be tuned from any action and/or vision module, treated as a black-box. The
learning can take advantage of past experiences (stored in the episodic and
procedural memories) in order to warm-start the exploration using a set of
hyper-parameters previously optimized from objects similar to the new unknown
one (stored in a semantic memory). As example, the system has been used to
optimized 9 continuous hyper-parameters of a professional software (Kamido)
both in simulation and with a real robot (industrial robotic arm Fanuc) with a
total of 13 different objects. The robot is able to find a good object-specific
optimization in 68 (simulation) or 40 (real) trials. In simulation, we
demonstrate the benefit of the transfer learning based on visual similarity, as
opposed to an amnesic learning (i.e. learning from scratch all the time).
Moreover, with the real robot, we show that the method consistently outperforms
the manual optimization from an expert with less than 2 hours of training time
to achieve more than 88% of success