Personal variations severely limit the performance of appearance-based gaze
tracking. Adapting to these variations using standard neural network model
adaptation methods is difficult. The problems range from overfitting, due to
small amounts of training data, to underfitting, due to restrictive model
architectures. We tackle these problems by introducing the SPatial Adaptive
GaZe Estimator (SPAZE). By modeling personal variations as a low-dimensional
latent parameter space, SPAZE provides just enough adaptability to capture the
range of personal variations without being prone to overfitting. Calibrating
SPAZE for a new person reduces to solving a small optimization problem. SPAZE
achieves an error of 2.70 degrees with 9 calibration samples on MPIIGaze,
improving on the state-of-the-art by 14 %. We contribute to gaze tracking
research by empirically showing that personal variations are well-modeled as a
3-dimensional latent parameter space for each eye. We show that this
low-dimensionality is expected by examining model-based approaches to gaze
tracking. We also show that accurate head pose-free gaze tracking is possible