We show the short-time existence and nonlinear stability of vortex sheets for
the nonisentropic compressible Euler equations in two spatial dimensions, based
on the weakly linear stability result of Morando--Trebeschi (2008) [20]. The
missing normal derivatives are compensated through the equations of the
linearized vorticity and entropy when deriving higher-order energy estimates.
The proof of the resolution for this nonlinear problem follows from certain
\emph{a priori} tame estimates on the effective linear problem {in the usual
Sobolev spaces} and a suitable Nash--Moser iteration scheme.Comment: to appear in: J. Differential Equations 2018. arXiv admin note:
substantial text overlap with arXiv:1707.0267