research

Stable divisorial gonality is in NP

Abstract

Divisorial gonality and stable divisorial gonality are graph parameters, which have an origin in algebraic geometry. Divisorial gonality of a connected graph GG can be defined with help of a chip firing game on GG. The stable divisorial gonality of GG is the minimum divisorial gonality over all subdivisions of edges of GG. In this paper we prove that deciding whether a given connected graph has stable divisorial gonality at most a given integer kk belongs to the class NP. Combined with the result that (stable) divisorial gonality is NP-hard by Gijswijt, we obtain that stable divisorial gonality is NP-complete. The proof consist of a partial certificate that can be verified by solving an Integer Linear Programming instance. As a corollary, we have that the number of subdivisions needed for minimum stable divisorial gonality of a graph with nn vertices is bounded by 2p(n)2^{p(n)} for a polynomial pp

    Similar works

    Available Versions

    Last time updated on 30/03/2019
    Last time updated on 10/08/2021