There has been significant progress in understanding the parallelism inherent
to iterative sequential algorithms: for many classic algorithms, the depth of
the dependence structure is now well understood, and scheduling techniques have
been developed to exploit this shallow dependence structure for efficient
parallel implementations. A related, applied research strand has studied
methods by which certain iterative task-based algorithms can be efficiently
parallelized via relaxed concurrent priority schedulers. These allow for high
concurrency when inserting and removing tasks, at the cost of executing
superfluous work due to the relaxed semantics of the scheduler.
In this work, we take a step towards unifying these two research directions,
by showing that there exists a family of relaxed priority schedulers that can
efficiently and deterministically execute classic iterative algorithms such as
greedy maximal independent set (MIS) and matching. Our primary result shows
that, given a randomized scheduler with an expected relaxation factor of k in
terms of the maximum allowed priority inversions on a task, and any graph on
n vertices, the scheduler is able to execute greedy MIS with only an additive
factor of poly(k) expected additional iterations compared to an exact (but
not scalable) scheduler. This counter-intuitive result demonstrates that the
overhead of relaxation when computing MIS is not dependent on the input size or
structure of the input graph. Experimental results show that this overhead can
be clearly offset by the gain in performance due to the highly scalable
scheduler. In sum, we present an efficient method to deterministically
parallelize iterative sequential algorithms, with provable runtime guarantees
in terms of the number of executed tasks to completion.Comment: PODC 2018, pages 377-386 in proceeding